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ABSTRACT :- Visual features representation 

along with deep learning techniques have a great 

area of research today as perspective of industries 

like facebook AI research. These industries aimed 

to focus on deep features learning with dataset and 

self-learning model. Most recent efforts in 

unsupervised feature learning already existed on 

either small or highly created datasets like 

ImageNet, whereas using non-curated raw datasets 

was found to decrease the feature quality when 

evaluated on a transfer task. From past 5-10 years 

lot of experimental research has been published and 

growing path of new ideas to improve accuracy in 

proposed system is not yet stopped. Paper has a 

systematic conclusion, the work already done in 

area related to visual feature representation, 

similarity computation methods and experimental 

results comparison. Our goal with paper is to 

bridge the performance gap with lot many existing 

techniques of deep leaning.  

Index Terms :- Deep features, Deep leaning, Self 

Learning model. 

 

I. INTRODUCTION:- 
Computer vision has been revolutionized 

by high capacity Convolution Neural Networks 

(ConvNets) and large-scale labeled data. Recently 

weakly-supervised training on hundreds of millions 

of images and thousands of labels has achieved 

state-of-the-art results on various benchmarks. 

Interestingly, even at that scale, performance 

increases only log linearly with the amount of 

labeled data. Thus, sadly, what has worked for 

computer vision in the last five years has now 

become a bottleneck: the size, quality, and 

availability of supervised data [11]. 

Unsupervised representation learning is 

highly successful in natural language processing, 

e.g., as shown by GPT and BERT [2]. But 

supervised pre-training is still dominant in 

computer vision, where unsupervised methods 

generally lag behind. The reason may stem from 

differences in their respective signal spaces. 

Language tasks have discrete signal spaces (words, 

sub-word units, etc.) for building tokenized 

dictionaries, on which unsupervised learning can be 

based. Computer vision, in contrast, further 

concerns dictionary building, as the raw signal is in 

a continuous, high-dimensional space and is not 

structured for human communication (e.g., unlike 

words). Several recent studies present promising 

results on unsupervised visual representation 

learning using approaches related to the contrastive 

loss. Though driven by various motivations, these 

methods can be thought of as building dynamic 

dictionaries. The “keys” (tokens) in the dictionary 

are sampled from data (e.g., images or patches) and 

are represented by an encoder network. 

Unsupervised learning trains encoders to perform 

dictionary look-up: an encoded “query” should be 

similar to its matching key and dissimilar to others. 

Learning is formulated as minimizing a contrastive 

loss. 

Unsupervised learning has been widely 

studied in the Machine Learning community [9], 

and algorithms for clustering, dimensionality 

reduction or density estimation are regularly used 

in computer vision applications. For example, the 

\bag of features" model uses clustering on 

handcrafted local descriptors to produce good 

image-level features [4]. A key reason for their 

success is that they can be applied on any specific 

domain or dataset, like satellite or medical images, 

or on images captured with a new modality, like 

depth, where annotations are not always available 

in quantity. Several works have shown that it was 

possible to adapt unsupervised methods based on 

density estimation or dimensionality reduction to 

deep models. 
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Figure 1: Illustration of the Convent method 

with clustering and classification. 

 

1.1 Deep Neural Network: 

Deep neural networks excel at perceptual 

tasks when labeled data are abundant, yet their 

performance degrades substantially when provided 

with limited supervision (In below fig, red). In 

contrast, humans and animals can learn about new 

classes of images from a small number of 

examples. What accounts for this monumental 

difference in data-efficiency between biological 

and machine vision? While highly structured 

representations may improve data-efficiency, it 

remains unclear how to program explicit structures 

that capture the enormous complexity of real world 

visual scenes, such as those present in the 

ImageNet dataset. An alternative hypothesis has 

therefore proposed that intelligent systems need not 

be structured a priori, but can instead learn about 

the structure of the world in an unsupervised 

manner. Choosing an appropriate training objective 

is an open problem, but a potential guiding 

principle is that useful representations should make 

the variability in natural signals more predictable. 

Indeed, human perceptual representations have 

been shown to linearize (or „straighten‟)the 

temporal transformations found in natural videos, a 

property lacking from current supervised image 

recognition models, and theories of both spatial and 

temporal predictability have succeeded in 

describing properties of early visual areas.  

 

 
Figure 2: Data-efficient image recognition with 

Contrastive Predictive Coding. With decreasing 

amounts of labeled data, supervised networks 

trained on pixels fail to generalize (red). When 

trained on unsupervised representations learned 

with CPC, these networks retain a much higher 

accuracy in this low-data regime (blue) [3]. 

 
Figure 3:  Illustration of our basic idea. The 

features of the same instance under different 

data augmentations should be invariant, while 

features of different image instances should be 

separated [7]. 

 
1.2 Convolutional Neural Network: 

Pre-trained convolutional neural networks, 

or Convnets, have become the building blocks in 

most computer vision applications. They produce 

excellent general-purpose features that can be used 

to improve the generalization of models learned on 

a limited amount of data. The existence of 

ImageNet [6], a large fully-supervised dataset, has 

been fueling advances in pre-training of convents 

However,  As a matter of fact, ImageNet is 

relatively small by today's standards; it \only" 

contains a million images that cover the specific 

domain of object classification. A natural way to 

move forward is to build a bigger and more diverse 

dataset, potentially consisting of billions of images. 

This, in turn, would require a tremendous amount 

of manual annotations, despite the expert 

knowledge in crowd sourcing accumulated by the 

community over the years. Replacing labels by raw 

metadata leads to biases in the visual 

representations with unpredictable consequences 

[4]. Learning a deep neural network together while 

discovering the data labels can be viewed as 

simultaneous clustering and representation 

learning. The latter can be approached by 

combining cross-entropy minimization with an off-

the-shelf clustering algorithm such as K-means. 

This is precisely the approach adopted by the 

recent DeepCluster method, which achieves 

excellent results in unsupervised representation 

learning. However, combining representation 

learning, which is a discriminative task, with 

clustering is not at all trivial. In particular, we show 

that the combination of cross-entropy minimization 

and K-means as adopted by DeepCluster cannot be 

described as the optimization of an overall learning 

objective; instead, there exist degenerate solutions 
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that the algorithm avoids via particular 

implementation choices [9]. 

 

II. DISCUSSION: 
2.1 Detailed Analysis of different approaches 

applied:  
Human observers can learn to recognize 

new categories of images from a handful of 

examples; yet doing so with artificial ones remains 

an open challenge. The efficient recognition of data 

is enabled by representations which make the 

variability in natural signals more predictable. 

Therefore revisit and improve Contrastive 

Predictive Coding is a better solution, as 

unsupervised objective for learning such 

representations. The given table-1 express an 

analysis of similarity measured in previous year for 

features of leafs. Some new implementation 

produces features which support state-of-the art 

linear classification accuracy on the ImageNet 

dataset. When used as input for non-linear 

classification with deep neural networks, this 

representation allows us to use 2–5x fewer labels 

than classifiers trained directly on image pixels.  

 

Table 1: Analysis of Feature Extraction Techniques based on similarities (leaf data) [17] 

SI. No. Authors & Year Methodology/ Approach Description 

1 De Chant S. et.al. 

2017, [12] 

Deep CNN model have been used for 

extraction of local and global features 

of the input image.  

They applied the 

method on maize 

leaves and used for 

prediction of disease 

Northern leaf blight 

(applied for binary 

classification only). 

2.  Yang Lu et.al. , 

2018, [13] 

6 layer CNN network proposed for 

feature extraction with the use of 3 

convolution layers , 1 for extraction of 

low level features other two for 

extraction of high level features. 

16 features are 

extracted by using 3 

convolution and 3 

max pooling filters 

and applied on rice 

plant diseases of 10 

classes. Classification 

accuracy of 95.48% 

achieved. 

3 Nikos Petrellis, 

2019, [14] 

Color, area and the number of the lesion 

spots featured have extracted. Then 

feature have been put along with 

additional information like weather 

metadata, to create disease signature. 

Novel method of 

automated and 

manual feature 

extortion has been 

proposed, where, 

user‟s input can also 

considered as a 

feature. They do this 

task using smart 

phones.  

4. Manso L. el.al. , 

2019 [15] 

Mathematical equations have been used 

to extract texture features (like contrast, 

entropy, homogeneity) and color 

features (like mean, variance etc.)  

15 features extracted, 

which includes 

texture and color 

features only but not 

considered the 

affected area of leaf. 

5.  Saradhambal. G. 

et.al. , 2019, [16] 

k means clustering for segmentation 

have been used for segmentation, and 

shape and texture features are 

considered as a main features which are 

calculated by mathematical equations.  

Total 10 features 

extracted. 5 of which 

are shape features 

(like area, perimeter, 

no of component etc.) 

and 5 are texture 

features (like 

contrast, entropy, co 

relation etc.) 
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The unsupervised representation 

substantially improves transfer learning to object 

detection on the PASCAL VOC dataset, surpassing 

fully supervised pre-trained ImageNet classifiers. A 

main purpose of unsupervised learning is to pre-

train representations (i.e., features) that can be 

transferred to downstream tasks by fine-tuning.  

Authors present Momentum Contrast (MoCo) for 

unsupervised visual representation learning, a 

perspective on contrastive learning as dictionary 

look-up, they build a dynamic dictionary with a 

queue and a moving-averaged encoder. This 

enables building a large and consistent dictionary 

on-the-fly that facilitates contrastive unsupervised 

learning. MoCo provides competitive results under 

the common linear protocol on ImageNet 

classification. More importantly, the 

representations learned by MoCo transfer well to 

downstream tasks. MoCo can outperform its 

supervised pre-training counterpart in 7 

detection/segmentation tasks on PASCAL VOC, 

COCO, and other datasets, sometimes surpassing it 

by large margins.  

Clustering is a class of unsupervised 

learning methods that has been extensively applied 

and studied in computer vision. Little work has 

been done to adapt it to the end-to-end training of 

visual features on large scale datasets. In this work, 

author [4] presents DeepCluster, a clustering 

method that jointly learns the parameters of a 

neural network and the cluster assignments of the 

resulting features. DeepCluster iteratively groups 

the features with a standard clustering algorithm, k- 

means, and uses the subsequent assignments as 

supervision to update the weights of the network. 

They apply DeepCluster to the unsupervised 

training of convolution neural networks on large 

datasets like ImageNet and YFCC100M. The 

primary study and experiment on visual corps 

image features provides given effect as in figure 4 

with respect of clustering goodness [4]. Effect of 

the experiment is to train DeepCluster on ImageNet 

[6] unless mentioned otherwise. It contains 1:3M 

images uniformly distributed into 1; 000 classes. 

 
 

 

Figure 4: (a): evolution of the clustering quality along training epochs, (b): evolution of cluster 

reassignments at each clustering step;(c): validation mAP classification performance for various choices 

of k. 

2.2Findings and Comparisons Summary for 

different network & dataset:  
As a clustering the unsupervised learning 

and deep clustering provides a good performance 

and continuously engaged by many research. It 

showed the trust of deep clustering algorithm by 

many researchers. Table 2: shows the work carried 

by many researches with improves affection on 

using more convolution layers for ImageNet. 

DeepCluster outperforms the state of the art from 

conv3 to conv5 layers by 3 to 5%. The largest 

improvement is observed in theconv4 layer, while 

the conv1 layer performs poorly, probably because 

the Sobel filtering discards color. Linear 

classification on ImageNet and Places using 

activations from the convolutional layers of an 

AlexNet as features. We report classification 

accuracy on the central crop. Numbers for other 

methods are from Zhang. 

(a)  Clustering Quality (b) Clustering Reassignment (c) Influence of  k  
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Table 2:  Analysis by different authors on linear classification on ImageNet and Place 

  ImageNet Place 

Method Conv1 Conv2 Conv3 Conv4 Conv5 Conv1 Conv2 Conv3 Conv4 Conv5 

Place Lables Na Na Na Na Na 22.1 35.1 40.2 43.3 44.6 

ImageNetLables 19.3 36.3 44.2 48.3 50.5 22.7 34.8 38.4 39.4 38.7 

Random  11.6 17.1 16.9 16.3 14.1 15.7 20.3 19.8 19.1 17.5 

                      

Pathak[17] 14.1 20.7 21 19.8 15.5 18.2 23.2 23.4 21.9 18.4 

Doersch[18] 16.2 23.3 30.2 31.7 29.6 19.7 26.7 31.9 32.7 30.9 

Zhang[19] 12.5 24.5 30.4 31.5 30.3 16 25.7 29.6 30.3 29.7 

Donahue[20] 17.7 24.5 31 29.9 28 21.4 26.2 27.1 26.1 24 

Noroozi and 

Favaro[21] 18.2 28.8 34 33.9 27.1 23 32.1 37.5 34.8 31.3 

Noroozi[22] 18 30.6 34.3 32.5 25.7 23.3 33.9 36.3 34.7 29.6 

Zhang[23] 17.7 29.3 35.4 35.2 32.8 21.3 30.7 34 34.1 32.5 

                      

Deep Cluster  12.9 29.2 38.2 39.8 36.1 18.6 30.8 37 37.5 33.1 

 

 

Consistently the conclusive Comparisons 

on ImageNet linear classification with different 

techniques have been judged on 100- 400 epoc. All 

are based on ResNet-50 pre-trained with two 224 x 

224 views. The transfer leaning is a new area where 

we find almost similar kind results statistics. 

Transfer Learning. All unsupervised methods are 

based on 200-epoch pre-training in ImageNet. 

VOC 07 detection: Faster R-CNN fine-tuned in 

VOC 2007 trainval, evaluated in VOC 2007 test; 

VOC 07+12 detection: Faster R-CNN fine-tuned in 

VOC 2007 trainval + 2012 train, evaluated in VOC 

2007 test; COCO detection and COCO instance 

segmentation: Mask R-CNN [18] fine-tuned in 

COCO 2017 train, evaluated in COCO 2017 value 

has been shown in table 3: 

 

Table 3: Comparisons on ImageNet linear classification on some latest networks 

 

 

Unsupervised image representations have 

significantly reduced the gap with supervised pre-

training, notably with the recent achievements of 

contrastive learning methods. These contrastive 

methods typically work online and rely on a large 

number of explicit pair wise feature comparisons, 

which is computationally challenging. The online 

algorithm, SwAV, takes advantage of contrastive 

methods without requiring computing pair wise 

comparisons. Specifically, our method 

simultaneously clusters the data while enforcing 

consistency between cluster assignments produced 

for different augmentations (or “views”) of the 

same image, instead of comparing features directly 

as in contrastive learning. Simply put, they use a 

“swapped” prediction mechanism where they 

predict the code of a view from the representation 

of another view. The method can be trained with 

large and small batches and can scale to unlimited 

amounts of data. Compared to previous contrastive 

methods, our method is more memory efficient 

since it does not require a large memory bank or a 

special momentum network. 
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One core objective of deep learning is to 

discover useful representations, and the simple idea 

explored here is to train a representation-learning 

function, i.e. an encoder, to maximize the mutual 

information (MI) between its inputs and outputs. 

This work investigates unsupervised learning of 

representations by maximizing mutual information 

between an input and the output of a deep neural 

network encoder. Importantly, [6] they show that 

structure matters: incorporating knowledge about 

locality in the input into the objective can 

significantly improve a representation‟s suitability 

for downstream tasks. They further control 

characteristics of the representation by matching to 

a prior distribution adversarial. Their method, 

which they call Deep InfoMax (DIM), outperforms 

a number of popular unsupervised learning 

methods and compares favorably with fully-

supervised learning on several classification tasks 

in with some standard architecture. Siamese 

networks are general models for comparing 

entities. Their applications include signature and 

face verification, tracking, one-shot learning, and 

others. In conventional use cases, the inputs to 

Siamese networks are from different images, and 

the comparability is determined by supervision. 

Siamese networks have become a common 

structure in various recent models for unsupervised 

visual representation learning. These models 

maximize the similarity between two 

augmentations of one image, subject to certain 

conditions for avoiding collapsing solutions [1]. In 

this paper, they report surprising empirical results 

that simple Siamese networks can learn meaningful 

representations even using none of the following: 

(i) negative sample pairs, (ii) large batches, (iii) 

momentum encoders. Their experiments show that 

collapsing solutions do exist for the loss and 

structure, but a stop-gradient operation plays an 

essential role in preventing collapsing. They also 

provide a hypothesis on the implication of stop-

gradient, and further show proof-of-concept 

experiments verifying it. 

 

III. CONCLUSION: 
Learning visual representations with self-

supervised learning has become popular in 

computer vision. The auxiliary tasks models where 

labels are free to obtain have most tasks end up 

providing data to learn specific kinds of invariance 

useful for recognition. In many articles the 

exploitation of different self-supervised approaches 

to learn representations invariant to (i) inter-

instance variations (two objects in the same class 

should have similar features) and (ii) intra-instance 

variations (viewpoint, pose, deformations, 

illumination, etc.). Instead of combining two 

approaches with multi-task learning, they argue to 

organize and reason the data with multiple 

variations. Specifically, they propose to generate a 

graph with millions of objects mined from 

hundreds of thousands of videos. 

Competiveness of minimalist method 

suggests shape is an important core reason for 

effectiveness. Representation learning focuses on 

modeling invariance by different network. Lot 

many survey and statistics represents that 

unsupervised learning in variety of computer vision 

task give and shows better results. MoCo‟s 

improvements are considerable and noticeable for 

small dataset and suggest that it may not be used 

for large scale data. MoCo can be used with pretext 

task for constructive learning. 
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